Hola, bienvenido a una entrada más de Fundamentos de matemáticas de UNIVIA. En este escrito se discutirán tópicos necesarios para poder entender el tema de factorización. Esta información ha sido rescatada del siguiente enlace: http://goo.gl/X0CWF , doy crédito y agradecimiento a sus autores.
Cualquier expresión que incluya la relación de igualdad (=) se llama ecuación.
Una ecuación se denomina identidad si la igualdad se cumple para cualquier valor de las variables; si la ecuación se cumple para ciertos valores de las variables pero no para otros, la ecuación es condicional.
Un término es una expresión algebraica que sólo contiene productos de constantes y variables; 2x, – a, 3x son algunos ejemplos de términos.
La parte numérica de un término se denomina coeficiente.
Los coeficientes de cada uno de los ejemplos anteriores son 2, – 1, y 3.
Una expresión que contiene un solo término se denomina monomio; si contiene dos términos se llama binomio y si contiene tres términos, es un trinomio.
Un polinomio es una suma (o diferencia) finita de términos.
En este contexto, el grado es el mayor exponente de las variables en un polinomio. Por ejemplo, si el mayor exponente de la variable es 3, como en ax3 + bx2 + cx, el polinomio es de tercer grado.
Una ecuación lineal en una variable es una ecuación polinómica de primer grado; es decir, una ecuación de la forma ax + b = 0.
Se les llama ecuaciones lineales porque representan la fórmula de una línea recta en la geometría analítica.
Una ecuación cuadrática en una variable es una ecuación polinómica de segundo grado, es decir, de la forma ax2 + bx + c = 0.
Un número primo es un entero (número natural) que sólo se puede dividir exactamente por sí mismo y por 1. Así, 2, 3, 5, 7, 11 y 13 son todos números primos.
Las potencias de un número se obtienen mediante sucesivas multiplicaciones del número por sí mismo. El término a elevado a la tercera potencia, por ejemplo, se puede expresar como a·a·a o a3.
Los factores primos de un cierto número son aquellos factores en los que éste se puede descomponer de manera que el número se puede expresar sólo como el producto de números primos y sus potencias.
Con estos conceptos refrescados, podemos continuar estudiando el siguiente tema del Álgebra, es decir, la factorización.
0 Comentarios