A pesar de lo sencillo que es el procedimiento de restar, es fácil confundirse. Tenemos interiorizado el sistema decimal y hemos aprendido a restar mecánicamente, sin detenernos a pensar en el significado del arrastre. Para simplificar las restas y reducir la posibilidad de cometer errores hay varias soluciones:
Dividir los números largos en grupos. En el siguiente ejemplo, vemos cómo se divide una resta larga en tres restas cortas:
100110011101 1001 1001 1101
010101110010 0101 0111 0010
010000101011 0100 0010 1011
Calculando el complemento a dos del sustraendo
Complemento a dos
El complemento a dos de un número N, compuesto por n bits, se define como:
C2N = 2n – N
Veamos un ejemplo: tomemos el número N = 1011012, que tiene 6 bits, y calculemos su complemento a dos:
N = 4510 n = 6 26 = 64 y, por tanto: C2N = 64 – 45 = 19 = 0100112
Ejercicio 3:
Calcula el complemento a dos de los siguientes números:
11001, 10001011, 110011010
Complemento a uno
El complemento a uno de un número N, compuesto por n bits es, por definición, una unidad menor que el complemento a dos, es decir:
C1N = C2N – 1
y, por la misma razón:
C2N = C1N + 1
Calculemos el complemento a uno del mismo número del ejemplo anterior:
siendo N = 101101, y su complemento a dos C2N = 010011
C1N = C2N – 1 = 010011 – 000001 = 010010
C1N = 010010
Da la sensación de que calcular el complemento a uno no es más que una forma elegante de complicarse la vida, y que no va a ser más sencillo restar utilizando el complemento a dos, porque el procedimiento para calcular el complemento a dos es más difícil y laborioso que la propia resta. Pero es mucho más sencillo de lo que parece.
En realidad, el complemento a uno de un número binario es el número resultante de invertir los UNOS y CEROS de dicho número. Por ejemplo si:
N = 110100101
Obtenemos su complemento a uno invirtiendo ceros y unos, con lo que resulta:
C1N = 001011010
y su complemento a dos es: C2N = C1N + 1 = 001011011
Veamos otro ejemplo de cálculo de complementos. Sea: N = 0110110101
El complemento a uno es: C1N = 1001001010
y el complemento a dos es: C2N = 1001001011
Restar en binario usando el complemento a dos
Y, por fin, vamos a ver cómo facilita la resta el complemento. La resta binaria de dos números puede obtenerse sumando al minuendo el complemento a dos del sustraendo. Veamos algunos ejemplos:
Primer ejemplo:
Hagamos la siguiente resta, 91 – 46 = 45, en binario:
1011011 – 0101110 = 0101101
Tiene alguna dificultad, cuando se acumulan los arrastres a la resta siguiente. Pero esta misma resta puede hacerse como una suma, utilizando el complemento a dos del sustraendo:
1011011 + 1010010 = 0101101
En el resultado de la suma nos sobra un bit, que se desborda por la izquierda. Pero, como el número resultante no puede ser más largo que el minuendo, el bit sobrante se desprecia.
Segundo ejemplo:
Hagamos esta otra resta, 219 – 23 = 196, utilizando el complemento a dos:
21910 = 110110112,
2310 = 000101112
C223 = 11101001
El resultado de la resta será: 11011011 + 11101001 = 111000100
Y, despreciando el bit que se desborda por la izquierda, llegamos al resultado correcto:
110001002 = 19610
Ejercicio 4:
Haz las siguientes restas binarias utilizando la técnica del complemento a dos. Al terminar, comprueba los resultados haciendo la resta en el sistema decimal:
11010001101 – 1000111101
10110011101 – 1110101
Fuente
Perez., L. G. (s.f.). ACTIVIDADES DE TECNOLOGÍA. Recuperado el 28 de Enero de 2013, de http://platea.pntic.mec.es/~lgonzale/tic/binarios/aritmetica.html
0 Comentarios